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Abstract 3 

This study investigates the relationship between diversification, technical efficiency (TE), and 4 

productivity in the US Gulf of Mexico commercial red snapper fishery. We estimated a vessel-5 

level input-oriented stochastic distance frontier simultaneously with a technical inefficiency 6 

effects model using a 20-year unbalanced panel (1997-2016). The panel documented the fishing 7 

activities of 1,255 fishing vessels,10 years before and after the adoption of the red snapper catch 8 

share program in 2007. Our study points to the desirability of diversification in catch share 9 

fisheries. It shows that red snapper fishers who diversified their fishing portfolio tended to be more 10 

productive and technically efficient. The study found evidence that diversification resulted in cost 11 

savings from catching multiple species (diversification economies), and that the productivity of 12 

the fleet increased (diversification efficiencies). The analysis also showed that the TE of the fleet 13 

increased in the catch share period. The average TE rose from 0.78 in the command and control 14 

period to 0.85 in the catch share period. Higher TE scores were associated with higher levels of 15 

diversification. Our results suggest that policies that encourage diversification such as reducing 16 

quota ownership caps, adjusting quota carryover provisions, and providing governmental 17 

assistance to increase participation in other fisheries deserve further attention. 18 
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1. Introduction 24 

In the past decade, there has been a renewed interest in investigating the impact of catch (output) 25 

diversification in commercial fisheries (Kasperski and Holland, 2013; Sethi et al., 2014, 26 

Finkbeiner, 2015; Hentati-Sundberg et al., 2015; Anderson et al., 2017; Cline et al., 2017; Holland 27 

et al., 2017; Ward et al., 2018). Most of these studies report that catch (species) portfolios have 28 

become more specialized (less diversified), raising concern about fishers’ ability to withstand large 29 

revenue fluctuations because of declining catches of one or more species. Besides spreading 30 

financial risk and reducing livelihood vulnerability, output diversification has also been shown to 31 

increase resilience to market and oceanographic shifts (Sethi et al., 2014; Cline et al., 2017). Table 32 

1 presents a summary of recent literature dealing with catch diversification in fisheries.1 33 

Although established management approaches such as limited entry were expected to lock 34 

fishers into specific fisheries, modern management approaches–which assign exclusive, tradable 35 

fishing privileges–such as catch shares, have also reduced diversification despite the flexibility to 36 

participate in multiple fisheries by purchasing and/or leasing harvesting privileges (Holland and 37 

Kasperski, 2016). Holland et al. (2017) report that while some of the diversification decreases seen 38 

in US catch share programs were associated with pre-existing trends, most programs experienced 39 

further reductions resulting from consolidation.2 Holland and Kasperski (2016) argue that the 40 

added harvesting flexibility and stability afforded by catch shares may ameliorate some of the 41 

negative impacts of catch specialization. In addition, they suggest that there may be a tradeoff 42 

between the efficiency gains from specialization and the risk-reduction benefits from 43 

diversification.  44 

Few studies have investigated the relationship between diversification, technical efficiency 45 

(TE), and productivity of commercial fishing fleets, let alone those under catch shares. Research 46 

on agricultural systems has shown that the relationship between crop diversification and farm 47 

productivity and TE is mixed (Rahman, 2009). Understanding TE and productivity changes can 48 

valuable because it provides insight into the efficient use of inputs and output growth. This study 49 

seeks to contribute to the production literature by examining the impact of diversification on TE 50 

and productivity using the US Gulf of Mexico red snapper catch share fishery as a case study.To 51 

achieve this goal, we implement an input-oriented stochastic distance frontier (ISDF) 52 

simultaneously with a technical inefficiency effects model for an unbalanced panel of 1,255 53 

individual vessels. The data used covers a time-span of 20 years, 10 years before and after the 54 

adoption of the red snapper catch share program in 2007. 55 

The rest of this paper is structured as follows. The next section introduces the management 56 

history of the fishery, followed by a description of the methods, data and empirical model. Then, 57 

we present and discuss the main results. The article concludes with a summary of the main findings 58 

and outlines policy implications. 59 

 60 

                                                           
1 Catch (output) diversification can take place at various time frames. In the short-run, fishers can target 

multiple species within a fishing trip (thus, not requiring different permits, gear, etc.) whereas in the 

medium- and long-term, fishers can participate in various single and multispecies fisheries say within a 

fishing season or year (requiring different permits, gear, etc.). In this paper, we aggregated trip level 

landings into fishing season landings to examine the impacts of catch diversification. 

2 Huang et al. (2018) caution that the trend towards specialization may be confounded in some instances. 

The authors found that following the introduction of catch shares in the US Northeast groundfish fishery 

the trawl fleet began diversifying their catch composition while the gillnet fleet did not adjust their catch 

mix. 
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2. The red snapper fishery of the US Gulf of Mexico 61 

The red snapper (Lutjanus campechanus) is one the main species of the Gulf of Mexico reef fish 62 

complex. The red snapper stock is prosecuted by commercial and recreational interests. Vertical 63 

lines and, to a lesser degree, bottom longlines are the main commercial gears that operate in the 64 

fishery. Vertical lines catch in excess of 95% of the red snapper. Red snapper is jointly caught with 65 

other species such as vermilion snapper, red grouper and gag. In 2016, about 422 commercial 66 

fishing vessels landed 6.1 million pounds (gutted weight, gw) of red snapper worth $28 million in 67 

dockside revenues (SERO, 2018). Most of the red snapper are landed on the west coast of Florida, 68 

Texas and Louisiana. 69 

The red snapper fishery has a complex management history (Waters, 2001; Porch et al., 2007; 70 

Hood et al., 2007; Agar et al., 2014). Its recent federal management history can be divided into 71 

two distinct periods: a command and control period (1984-2006) and an individual fishing quota 72 

(IFQ) or catch share period (2007-onwards). For ease, we use the terms IFQ and catch share 73 

interchangeably. Supplementary Table 1 shows the chronology of the main management actions 74 

(SERO, 2018). 75 

The command and control era (1984-2006), began with the adoption of the Gulf of Mexico 76 

Reef Fish Fishery Management Plan (FMP) in 1984. The FMP sought to attain the greatest overall 77 

benefit to the US by increasing the yield of the reef fish fishery, minimizing user conflicts in 78 

nearshore waters and protecting juvenile reef fish and their habitats (Waters, 2001). Initially, the 79 

Gulf of Mexico Fishery Management Council (Council hereafter), body that develops management 80 

recommendations for the US federal fisheries in the Gulf of Mexico, used minimum size limits 81 

and quotas to protect the red snapper resource, but these measures failed. Subsequent stock 82 

assessments concluded that the stock was in worse condition than expected, which resulted in 83 

reduced commercial quotas, a moratorium on the issuance of new reef fish permits, and red snapper 84 

daily trip limit endorsements (200 or 2,000 lb. depending on the vessel’s catch history).  85 

Despite these efforts, fishing derby conditions developed and quotas began to be filled 86 

progressively sooner. Subsequently, the Council sought to extend the fishing season by splitting 87 

the quota into two seasons (spring and fall) and establishing 10/15-day fishing mini-seasons. 88 

Waters (2001) reports that these management measures were not only biologically ineffective 89 

because of quota overages and high discard rates, but also were economically wasteful because 90 

they resulted in overcapacity (i.e., excessive capital investments), short fishing seasons, market 91 

gluts, depressed prices, higher harvesting costs, and unsafe fishing practices. 92 

The catch share era (2007-present) began when the Council implemented Amendment 26 on 93 

January 1, 2007, which introduced the red snapper IFQ program. The intent of the program was to 94 

reduce overcapacity and to eliminate, to the extent possible, the problems associated with derby 95 

fishing in the commercial fishery. Under the catch share program, eligible participants were 96 

assigned exclusive, tradeable harvesting privileges. A 5-year review of the IFQ program concluded 97 

that the program had mixed success reducing overcapacity but was successful in mitigating derby 98 

fishing behavior and preventing quota overages. This review noted that the fishing season 99 

increased from an average of 109 days to a year-round season. In addition to adjusting the timing 100 

of fishing activities, the program also influenced their pace and scope. Fishers began making fewer 101 

but longer trips. The average duration of a fishing trip increased from three days in the command 102 

and control period to four days in the catch share period because of the elimination of trip limits, 103 

fishing windows, and seasonal quotas (Table 2). This added flexibility encouraged a more efficient 104 

scale of operation. Red snapper fishers not only increased their landings but also adjusted their 105 

catch composition. The vertical line fleet began catching more vermilion snapper and shallow-106 
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water grouper species (Fig. 1). Fig. 1 also shows how revenue diversification (proxied by the 107 

Herfindahl–Hirschman Index, HHI3) evolved over time. Low HHI scores indicate high levels of 108 

diversification whereas high HHI scores denote increased specialization (or low levels of 109 

diversification). Fig.2 shows that during the catch share period, severe quota cutbacks at the start 110 

of the program encouraged revenue diversification (low HHI scores); however, as the stock 111 

recovered and quotas rose, revenue diversification decreased (high HHI scores), especially in 112 

2015. Figs. 1 and 2 show that the adoption of catch shares and changing red snapper quota levels 113 

may have influenced diversification levels. However, these do not necessarily imply causation. 114 

Rising share and allocation (quota rental) prices suggest that the catch share program helped 115 

improve economic efficiency in the fishery (SERO, 2018). Capacity studies suggested that about 116 

one-fifth of the current fleet could harvest the current commercial quota. 117 

3. Methods 118 

We use a stochastic distance frontier (SDF) model to assess the impact of output diversification 119 

on the performance of the US Gulf of Mexico commercial red snapper fishery.4 The SDF method 120 

was selected because it can accommodate multiple outputs and inputs and can also readily evaluate 121 

variables affecting TE (Wree et al., 2018; Solís et al., 2015b; Kumbhakar and Lovell, 2000). 122 

SDFs can have an input- or output-orientation. Our empirical analysis relies on an input-123 

orientation because it can directly measure the effect of diversification on the productivity and 124 

efficiency of the fleet. The input orientation assesses the proportional reduction in all inputs that 125 

would bring a fishing vessel to the efficient (or best practice) frontier (Kumbhakar et al., 2007). 126 

This method relies on a cost minimization framework,5which is a plausible behavioral assumption, 127 

because catch share programs permit fishers to freely choose the optimal input combination as to 128 

maximize their harvesting efficiency and profits. 129 

We define the harvesting technology of fishing vessels using an input set, L(y), which 130 

represents the input vector, x, which can produce the output vector, y. The input-oriented distance 131 

function (IDF) is defined on the input set, L(y), is given by: 132 

)}()/(:max{),( yLxyxD x

I ∈= λλ      (1) 133 

where DI is the input distance function, and λ is the efficiency score (Coelli and Perelman, 1999). 134 

DI is non-decreasing, positively linearly homogenous, and concave in x, and increasing in y. The 135 

distance function, DI, is equal to unity if the x is located on the inner boundary of the input set. 136 

                                                           
3 More detail about the HHI index is presented in Section 3.2. 
4The SDF method is based on an econometric (parametric) specification of a production frontier. A 

production frontier defines the technological relationship between the level of inputs and the resulting level 

of outputs from the best performing firms in an industry. In recent years, this method has grown not only 

in popularity, but also in sophistication. Quang Van (2019) presents a through literature review, focusing 

on marine and fishing industries. Two reviewers pointed out that the usefulness of this method may be 

limited because of the potential of confounding effects brought about changes in institutional arrangements 

and biological conditions (see Reimer et al., 2017). However, a recent paper by Chávez Estrada et al. (2018) 

shows that the use of flexible econometric models, such as SDF, addresses most of the criticisms raised by 

the above paper. 
5 Kumbhakar et al. (2007) show the theoretical basis to derive the ISDF within a cost minimization 

framework.  
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3.1 Diversification Economies 137 

The benefits of diversification can be assessed by examining whether the technology exhibits 138 

economies of scope, that is, the cost savings from producing multiple outputs rather than producing 139 

them separately. However, because its estimation requires cost data, which were unavailable for 140 

the entire study period, we calculated an analogous metric known as diversification economies 141 

(DE). DEs measure the gain or loss in total output achievable from the reallocation of inputs among 142 

different products (Wree et al., 2018; Solís et al., 2009; Coelli and Fleming, 2004). DEs do not 143 

require cost data and can be derived from the parameter estimates of the IDF. 144 

If a translog functional form is used to econometrically estimate the IDF (additional detail is 145 

offered in the empirical model section) then DEs between output (Y) pairs i and j can be estimated 146 

as the second order partial derivative of the IDF function with respect to Yi and Yj or ������ =147 

��	
�
������ (Morrison Paulet al. 2000). 148 

The second cross partial derivative must be positive to provide evidence of DEs because the 149 

first derivative with respect to Yi is negative (Coelli and Fleming, 2004). The first derivative with 150 

respect to Yi is negative because it captures how the  addition of an extra unit of Yi, holding all the 151 

other variables constant, reduces the amount by which we need to deflate the input vector to place 152 

the observation onto the efficient (best practice) frontier. Coelli and Fleming (2004) also point out, 153 

that in contrast to economies of scope, which allow the output composition to vary to minimize 154 

costs, DEs holds them fixed. Hence, DEs can be thought as a lower-bound measure of the 155 

economies of scope derived from a cost function. 156 

3.2 Factors affecting technical efficiency 157 

In addition to examining DEs, we investigated what factors influenced the efficiency of the vessels 158 

relative to the best practice frontier, focusing on the management regime (command and control 159 

vs. catch shares) and fishing practices (alternative diversification metrics). TE vessels produce the 160 

maximum catch possible with the minimum amount of inputs. TE vessels operate on the best 161 

practice frontier whereas TE inefficient vessels operate inside the frontier because potential 162 

catches are forgone due to inefficient input use. We selected the introduction of the catch share 163 

program because the program resulted in an extended fishing season and increased regulatory 164 

flexibility (i.e., elimination of trip limits, seasonal quotas, fishing windows; Agar et al., 2014). 165 

Solís et al. (2015b) also documented improvements in TE and productivity in the catch share 166 

period.  167 

We also considered how changes in fishing practices, in particular diversification, affected TE. 168 

Table 2 and Fig. 1 show that, after the catch share program, vertical line vessels took fewer, but 169 

longer fishing trips and diversified the composition of their catch. We used the HHI and Berger-170 

Parker (BP) indices to explore diversification efficiencies. HHI scores were calculated as �� =171 

∑ ������� , where si is the gross revenue share of species i. HHI scores range from close to zero (full 172 

diversification) to 10,000 (full specialization). BP is a dominance score, which measures the 173 

proportional importance of the most valuable species (Magurran, 1988). BP scores were calculated 174 

as = ����/� , where N is the total revenue and Nmax is the revenue from the most valuable species. 175 

BP scores range from close to zero to unity. 176 

4. Data and empirical model 177 

4. Data 178 

We employed three databases: 1) Southeast Coastal Fisheries Logbook; 2) Permits Information 179 

Management Systems (PIMS); and 3) Seafood dealer reports. The logbook database contains 180 
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information on outputs and inputs (landings and fishing effort), the PIMS database contains 181 

information on fishing vessel characteristics, and the dealer database contains data on dockside 182 

prices.6 183 

Our study focused on how the red snapper vertical line vessels diversified their annual fishing 184 

revenue by targeting different species within the Gulf of Mexico region. The analysis included 185 

both red snapper and non-red snapper trips. Red snapper is jointly caught with other (catch share 186 

and non-catch share) reef fish species. To harvest red snapper (and other reef fish species) fishers 187 

are required to have a valid Gulf of Mexico reef fish permit and allocation (quota rental). The vast 188 

majority of the red snapper fishers operate mainly in the reef fishery. A small percentage of the 189 

vertical line fleet may switch gears (or use multiple gears) during part of the year;  however, our 190 

analysis was limited to the vertical line fleet because they land most of the red snapper (over 95%)7 191 

and also to avoid heterogeneous production biases in the econometric estimation. Huang et al. 192 

(2018) note that production decisions may vary significantly across gears in the face of the same 193 

regulatory change. 194 

After merging the databases, we ended up with a highly unbalanced panel that contained 195 

110,545 trip-level observations on 1,255 distinct fishing vessels. Table 2 presents trip-level 196 

summary statistics of the panel. Following Felthoven and Morrison Paul (2004), we aggregated 197 

trip-level data to seasonal or quarterly level (January-March, April-June, July-September, and 198 

October-December). This aggregation might have affected the strict interpretation of the seasonal 199 

HHI scores since two distinct fishing vessels could have an identical ‘seasonal HHI’ score but have 200 

different trip-level revenue mix profiles within the season. To control for this situation, we also 201 

incorporated the standard deviation of HHI scores (SD HHI), where low SD HHI values imply that 202 

trips within the season show a more diversified output mix. BP indices were also aggregated 203 

seasonally. The final dataset used in the analysis contained 21,191 (seasonal vessel-level) 204 

observations. The analysis covered a 20-year span ranging from 1997 to 2016 (10 years before and 205 

after the catch share program). 206 

4.2 Empirical model 207 

An input-oriented stochastic distance frontier (ISDF) was employed to estimate the production 208 

frontier. Coelli and Perelman (1999) show that a second-degree approximation to a true IDF can 209 

be depicted using a translog functional form with symmetry and homogeneity imposed: 210 

ln �
������ =  ! + ∑  � ln #�� + 0.5∑ ∑  � ln #��� ln #�'�
(�'

(��
(� + ∑ )*�+�* ln ,�-����. +211 

0.5∑ ∑ )** ln ,
�-��
��� . ln ,

�-'�
��� .

�+�*'
�+�*� + ∑ ∑ /*� ln ,�-����. ln #��(��+�* + ∑ 012131  (2) 212 

where the subindex i denotes fishing vessel i and ds characterizes all control variables in the model.  213 

Using the traditional framework of the stochastic production frontier method, we can formulate 214 

an ISDF in which the distance from each observation to the ISDF represents the sum of inefficiency 215 

and a traditional error term (i.e., DI = ε = v - u): 216 

 217 

                                                           
6More information on these databases can be found at http://www.sefsc.noaa.gov/fisheries. 

7 Thus, focusing on vertical liners should not generate any econometrics issues related to sample selection 

bias. 
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ln �
������ =  ! + ∑  � ln #�� + 0.5∑ ∑  � ln #��� ln #�'�
(�'

(��
(� + ∑ )*�+�* ln ,�-����. +218 

0.5∑ ∑ )** ln ,
�-��
��� . ln ,

�-'�
��� .

�+�*'
�+�*� + ∑ ∑ /*� ln ,�-����. ln #��(��+�* + ∑ 012131 ++4� − 6� 219 

         (3) 220 

 221 

where ui and vi are the elements of the composed error term, εi, defined by Aigner et al. (1977). 222 

Specifically, vi is a random variable reflecting noise and other stochastic shocks, and ui captures 223 

the TE relative to the stochastic frontier.  224 

The specification of the seasonal model included: 1) five outputs: red snapper (y1), vermillion 225 

snapper (y2), shallow-water groupers (SWG; y3), other snappers (y4), and a residual or 226 

miscellaneous species group (y5); 2) two variable inputs including seasonal totals for days at sea 227 

(x1)8 and crew size (x2); 3) vessel length (x3), which controls for fishing capital (quasi-fixed input).9 228 

In addition, we included a set of biological, environmental, regional and seasonal control variables: 229 

spawning biomass index for red and vermillion snapper; multivariate El Niño Southern Oscillation 230 

(ENSO) index to account for climate variability; and regional landing dummies to control for 231 

regional variability across the Gulf region. Seasonal changes in fishing conditions were controlled 232 

using quarterly dummy variables (Q1, Q2, Q3, and Q4 was the base quarter). Biomass and ENSO 233 

trends are presented in Fig. 3. 234 

To increase the flexibility of the model, technical change was modeled using linear and 235 

quadratic time trends (t and t2) and interactions of the time trend with input and output quantities 236 

were also introduced to account for non-constant rate changes and for non-neutral technical 237 

change.10 One benefit of this flexible form is that it allow us to measure how elasticities change 238 

over time. 239 

Within this framework, the predictor of TE was measured following Jondrow et al. (1982) as 240 

the expectation of ui conditional on the composed error term εi: 241 

 7� = 89:;−6�<         (4) 242 

TE can be interpreted as a relative measure of managerial ability or fishing skill in our case. 243 

Caudill et al. (1995) proposed a framework to analyze the extent to which certain variables influence 244 

the inefficiency term ui. These authors developed a model in which the determinants of inefficiency 245 

were evaluated using a multiplicative heteroscedasticity framework. In our analysis, it took the 246 

form of: 247 

=>� = => ∙ 89:;@��;  <
         

(5) 248 

                                                           
8x1 was used to impose linear homogeneity in inputs in our model. 

9One reviewer argued that, in commercial fishing, all inputs should be treated as quasi-fixed. We agree that 

vessel length is always quasi-fixed (as in our paper); but disagree that crew size and trip length (fishing 

time) are always quasi-fixed. In the Gulf of Mexico red snapper fishery, Table 3 shows that in the catch 

share period, fishers increased the average crew size by 4.6% and the average trip length by 37%. Similar 

model specifications to ours can be found in Álvarez et al. (2020), Huang et al. (2018), Agar et al. (2017), 

Solís et al. (2015a, 2015b, 2014, 2013), Pascoe et al. (2012), Felthoven et al. (2009), among others. 

10 Squires and Vestergaard (2013) discuss the implications of technical change on the exploitation of 

renewable resources. 
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where Zmi is a vector of management interventions (dichotomous variable for the catch share period) 249 

and fishing practices (revenue diversification, standard deviation of revenue diversification, and 250 

revenue dominance, measured by HHI, SD HHI and BP, respectively that explain inefficiency and 251 

αs are unknown parameters. Given that inefficiency is assumed to follow a half-normal distribution, 252 

decreasing variance measures efficiency gains. Both the ISDF and the inefficiency model are 253 

estimated jointly using maximum likelihood. 254 

5. Results and discussion 255 

5.1 Model Performance 256 

Parameter estimates of the ISDF are presented in Table 3. Close to 85% of the estimated 257 

parameters were statistically different from zero. All first-order coefficients were statistically 258 

significant. The majority of second-order terms were also significant, confirming the presence of 259 

non-linearities in the production process, which supports the use of a flexible translog functional 260 

form.11 Table 4 shows that our empirical model is non-decreasing in inputs and decreasing in 261 

outputs, necessary conditions for a well-behaved ISDF. 262 

Additional hypothesis tests using likelihood ratio tests were also conducted. Table 4 presents 263 

the parameter estimate and significance level of γ=σu
2/(σu

2 + σv
2), which ranges from zero (absence 264 

of technical inefficiency) to unity (absence of random noise; Rahman, 2009). γ was found to be 265 

statistically different from zero at the 1% level. The rejection of the null hypothesis Ho: γ = 0, 266 

implies the existence of a stochastic frontier function. We also rejected the null hypothesis that all 267 

slope coefficients in the inefficient model were equal to zero. In addition, we tested for input-268 

output separability by setting all cross-terms between outputs and inputs equal to zero. A likelihood 269 

ratio test rejected the presence input-output separability implying that the input and output vectors 270 

cannot be aggregated into a single aggregate input and single aggregate output (Jensen, 2002). 271 

5.2 Characteristics of the Technology  272 

Table 5 presents input and output partial distance elasticities and returns to scale (RTS) estimates.12 273 

These measures were estimated for the whole period and by management regime (i.e., command 274 

and control and catch share periods). All the output partial distance elasticities were positive, 275 

highly inelastic, and statistically significant. The own output partial distance elasticity of red 276 

snapper indicates that to increase red snapper landings by 1% fishers need to increase the use of 277 

all inputs by 0.07% (holding all input ratios constant). Most output partial distance elasticities in 278 

the catch share period rose presumably because catch shares allowed fishers to better use scarce 279 

inputs.  280 

RTS were estimated as the inverse of the sum of output partial distance elasticities (Coelli and 281 

Perelman, 1999). Table 4 shows that the RTS for the entire period equaled 3.69, indicating 282 

increasing RTS. Estimates of increasing RTS for the harvesting sector have been reported in 283 

Bjørndal and Gordon (2000), Felthoven et al. (2009) and Solís et al. (2014). Previous research has 284 

suggested that increasing RTS arises from substantial overcapacity in the fishery (Asche et al. 285 

2009). Our results show a 4.3% decrease in RTS during the catch share period (from 3.77 to 3.61), 286 

implying a drop in overcapacity. Solís et al. (2014) and Ropicki et al. (2018) have argued that the 287 

RTS declined because the less efficient vessels left the fishery and harvest restrictions eased. 288 

                                                           
11 The generalized likelihood ratio test also rejected the Cobb-Douglas against the translog functional form. 

12 A Wald-type test was used to test the significance of all elasticities and RTS and p-values are based on 

the delta method. All partial input and output elasticities and RTS are statistically significant at a 1% level. 
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Our model also included several control variables (e.g., fish abundance, climate variability, 289 

fishing regions (landing regions) and fishing seasons). Rasmussen (2010) explains that, in an ISDF 290 

framework, if the coefficient of a control variable is positive (negative) then the fishing firm faces 291 

higher (lower) production costs. As expected, fish abundance estimates for red and vermillion 292 

snapper were negative indicating that high fish abundances lower harvesting costs.  293 

The ENSO parameter estimate, which captured the effect of climate variability on production, 294 

was not statistically significant.13 Solís et al. (2015b) also did not find statistically significant 295 

results on the impact of climate variability on the Gulf of Mexico red snapper fishery. Karnauskas 296 

et al. (2015) report that, since the mid-1990s, the sea surface temperatures in the US Gulf of 297 

Mexico have been stable, and discuss the difficulties assessing the impact of climate and weather 298 

on fishing. 299 

All regional dummies displayed statistically significant coefficients. Fishing vessels operating 300 

off the coast of Louisiana were found to be the most productive, while those operating off the coast 301 

of Alabama and Mississippi were found to be the least productive. 302 

Following Kumbhakar et al. (2013) we calculated the rate of technical change (TC) as TC = 303 

∂lnDi/∂t. Annual TC rates for the entire, command and control, and catch share periods equaled 304 

0.265%, 0.196%, and 0.395%, respectively. These results imply an overall positive, but small, 305 

trend in TC over the study period. Our results also show that catch shares encouraged TC.   306 

5.3 Impact of Catch Diversification on the Performance of the Fishery 307 

Coelli and Fleming (2004) and Wree et al. (2018) explain that DEs measure the impact of 308 

diversification on the shape of the production technology (production structure), and consequently, 309 

on the productivity of the fleet. Table 5 shows that all ten DEs are positive, and that seven of those 310 

are statistically significant, indicating that we cannot reject the null hypothesis of no DEs at 311 

conventional significance levels.14 312 

The highest diversification gains were found in the [SWG - Other Species] pair, followed by 313 

[Red Snapper - Other Species] pair and [Vermillion Snapper - Other Species] pair (Table 5). DE 314 

values are small in magnitude. However, Coelli and Fleming (2004) clarify that these are lower-315 

bound estimates of scope economies. Comparable low-value DE estimates have been reported in 316 

agricultural settings (e.g., Wree et al., 2018; Solís et al., 2009; Coelli and Fleming, 2004). Squires 317 

et al. (1988) note that species overlap in time and space bound the extent of the economies of scope 318 

in commercial fisheries. 319 

The lower panel of Table 3 presents the parameter estimates of the inefficiency model. 320 

Following common practice, we interpret the impact of these variables relative to TE (rather than 321 

to TI), which means that the estimated coefficients should be interpreted as if they had the opposite 322 

sign. Table 3 shows that TE of the fleet increased during the catch share period.  323 

Parameter estimates for revenue diversity, standard deviation of revenue diversity, and revenue 324 

dominance (HHI, SD HHI and BP) were negative and statistically significant, suggesting that 325 

diversification (low HHI, SD HHI and BP scores) TE were positively associated. These result 326 

simply that, all other things being equal, vessels that diversify tend to be more efficient. 327 

                                                           
13 Similar results were found in preliminary analysis testing alternative climatic indicators including: the 

annual and seasonal average sea surface temperature (SST); the Japan Meteorological Agency (JMA) 

ENSO index; and, the accumulated cyclone energy (ACE). 

14 A likelihood ratio test against a restricted model making all DEs equal to zero confirms this result. 
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Mean TE scores were calculated for the entire and by management regime (command and 328 

control, and catch share). The average TE score for the entire period equaled 0.80, indicating 329 

substantial levels of inefficiency. When we split TE scores by management regime (command and 330 

control (1997-2006) vs. catch shares (2007-2016)) we observe that the TE of the fleet increased 331 

following the adoption of the catch shares program. Mean TE scores rose by nearly 9% from 0.78 332 

to 0.85. Similar outcomes can be found in Brandt (2007), Pascoe et al. (2012) and Solís et al. 333 

(2014). These authors proposed that TE improvements could be partly explained by the exit of the 334 

less efficient vessels. In addition, the TE of the red snapper fleet possibly improved during the 335 

catch share period because many of the former Class 1 vessels (2,000 lb trip limit), who received 336 

a sizable share of the initial quota allocation, began to diversify since they were no longer 337 

constrained by trip limits, short seasons, and seasonal quotas. Solís et al. (2015b) found that Class 338 

1 (2,000 lb trip limit) vessels were more productive than Class 2 (200 lb trip limit) vessels. While 339 

it may be tempting to suggest that the reported TE increases occurred because of the catch share 340 

program; these do not imply causation. Additional work is necessary to isolate the impact of catch 341 

shares on TE and productivity. 342 

Fig. 4 shows the Kernel density distribution of TE by diversification terciles (high, medium 343 

and low). This figure shows that the distribution of TE scores for the most diversified vessels is 344 

significantly higher and narrower than for those with medium and lower levels of diversification. 345 

When we split TE scores by the upper and lower diversification terciles within each management 346 

regime, we observe again that diversification is associated with higher levels of TE (Fig. 5). In 347 

both cases, the distribution of TE scores became steeper and narrower during the catch share period 348 

(Fig. 5). A similar outcome is reported by Álvarez et al. (2020), who found that catch 349 

diversification is associated with higher TE levels among small-scale fishers in the Spanish island 350 

of Gran Canaria. 351 

Fig. 6 shows the evolution of mean TE and HHI scores over time. It shows a positive 352 

association between TE and diversification. This figure also shows that generally TE and 353 

diversification rose during the catch share period except for 2015 when there was abrupt and 354 

significant red snapper quota increase (23%). Fig. 6 also shows that the fleet becomes more 355 

homogenous during the catch share period, which is captured by the size of the circles. The size 356 

of the circles is proportional to the annual coefficient of variation of the TE scores. 357 

6. Concluding remarks 358 

Diversification is recognized as a desirable livelihood strategy because it increases fishers’ 359 

opportunities and income, and reduces income fluctuations caused by shifts in fish abundance, 360 

market and oceanographic conditions as well as regulatory actions. Recent work showed that many 361 

US catch share fisheries have become less diversified (specialized) suggesting that there may be a 362 

tradeoff between the efficiency gains from specialization and risk-reduction benefits from 363 

diversification. 364 

Our study points to the desirability of diversification in catch share fisheries. It shows that red 365 

snapper fishers who diversify their fishing portfolio tend to be more productive and technically 366 

efficient. Without being prescriptive, our work suggests that policies that encourage diversification 367 

deserve further attention. One possibility would be to establish share and allocation (accumulation) 368 

caps that make red snapper quota widely available. In common with other catch share fisheries, 369 

red snapper quota ownership has become concentrated and expensive; thus, revising ownership 370 

caps could provide additional opportunities to re-enter the fishery and/or to readjust fishing 371 

portfolios. Similarly, added flexibility to carryover unused quota into the future (or borrow quota 372 

from the future) could also increase quota availability and foster diversification. Additionally, 373 
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government agencies should consider providing economic assistance (e.g., low-interest loans, 374 

grants, or other subsidies) to facilitate the purchase or lease of quota. 375 

All the above policy proposals, in addition to increasing diversification opportunities, have the 376 

potential to make quota more affordable to small participants and new entrants as well as reducing 377 

discarding. In the eastern Gulf, many red grouper fishers frequently discard incidentally caught 378 

red snapper because of the high cost of allocation (Cullis-Suzuki et al. 2012; Agar et al. 2014). 379 

Government assistance could also be used to enter (or increase participation in) non-reef fish 380 

fisheries, which would increase fishers’ resilience to biomass, market and oceanographic shifts 381 

since most of the vertical line fleet primarily operates in the reef fish fishery. 382 
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Table 1. Recent studies dealing with diversification in fisheries. 

Author(s) 

(Year of Pub.) 

Fishery 

(Region, Country) 

Method Period of Analysis 

Álvarez et al. (2020) Mixed, small-scale 

(Gran Canaria, Spain) 

Stochastic Production Frontier 2005-2010 

Anderson et al. (2017) Mixed  

(Alaska, USA) 

Hierarchical Bayesian variance 

function regression model 

1985-2014 

Cline et al. (2017) Mixed 

(Alaska, USA) 

Multivariate time series analysis 1980-1999 

Finkbeiner (2015) Mixed, small-scale (Baja 

California Sur, Mexico) 

Diversification index, Linear 

regression 

1997-2008 

Holland et al. (2017) Mixed  

(USA) 

Linear regression 1993-2014 

Huang et al. (2018) Groundfish Fishery 

(New England, USA) 

 

Stochastic Production Frontier 2007–2012 

Kasperski and Holland 

(2013) 

Mixed  

(West Coast and Alaska, USA) 

Gross income diversification index 1981-2010 

Sethi et al. (2014) Mixed 

(Alaska, USA) 

Descriptive statistics 1980–2010 

Ward et al. (2018) Salmon 

(Alaska, USA) 

Revenue function,  

Bayesian regression model 

1975 - 2016 
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Table 2. Descriptive statistics at the trip level.  

   
Entire Sample 

(1997-2016) 

Pre-Catch Shares 

(1997-2006) 

Catch Shares 

(2007-2016) 

Variablea Unit Parameter Mean S.D. Mean S.D. Mean S.D. 

Red snapper landings lb /trip y1 679.74 1,337.11 557.16 795.54 911.56 1,972.33 

Vermillion snapper landings lb/trip y2 297.18 791.03 228.35 670.77 427.36 965.55 

Shallow-water grouper landings lb/trip y3 326.38 653.17 278.53 609.73 416.87 719.63 

Other snappers landings lb/trip y4 15.92 113.57 12.09 76.49 23.16 161.70 

Miscellaneous species landings lb/trip y5 270.30 730.63 249.50 715.34 309.64 757.14 

Days away days x1 3.35 2.71 2.97 2.46 4.06 2.99 

Crew size count x2 2.80 1.29 2.85 1.34 2.72 1.19 

Vessel length feet  x3 39.13 10.53 40.02 11.09 37.43 9.14 

Log red snapper stock biomass StockRS 10.98 0.19 10.86 0.02 11.20 0.17 

Log vermillion snapper stock biomass StockVS 9.20 0.07 9.17 0.04 9.27 0.07 

Diversification score -- HHI 6,982.32 2,428.89 7,156.06 2,344.79 6,653.74 2,548.32 

Dominance score -- BP 0.83 0.18 0.86 0.17 0.79 0.20 

Red snapper quota 1,000 lb Quota 4,122 1,059 4,189 0 4,056 1,539 

South Texas dummy Area A 0.02 -- 0.02 -- 0.01 -- 

North Texas dummy Area B 0.11 -- 0.13 -- 0.08 -- 

Louisiana dummy Area C 0.22 -- 0.27 -- 0.11 -- 

Alabama-Mississippi dummy Area D 0.08 -- 0.07 -- 0.10 -- 

North Florida dummy Area E 0.37 -- 0.34 -- 0.43 -- 

West-Central Florida dummy Area F 0.16 -- 0.13 -- 0.22 -- 

South Florida dummy Area G 0.04 -- 0.03 -- 0.06 -- 

N. Observations   110,545 72,310 38,235 

 
a Landings and quota are reported in gutted weight (gw). 
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Table 3. Parameter estimates of the input distance function. 

Parameter Coefficient SE Parameter Coefficient SE 
Constant 1.7821 (1.2746) Area B -0.0509*** (0.0094) 

y1 -0.0684*** (0.0009) Area C -0.0686*** (0.0093) 

y2 -0.0540*** (0.0006) Area D -0.0184* (0.0099) 

y3 -0.0639*** (0.0010) Area E -0.0282*** (0.0094) 

y4 -0.0314*** (0.0007) Area F -0.0661*** (0.0101) 

y5 -0.0620*** (0.0009) Area G -0.0671*** (0.0112) 

y1* y1 -0.0119*** (0.0003) Q1 -0.0141*** (0.0032) 

y2* y2 -0.0111*** (0.0003) Q2 -0.0136*** (0.0031) 

y3* y3 -0.0104*** (0.0004) Q3 -0.0145*** (0.0032) 

y4* y4 -0.0027*** (0.0005) StockRS -0.1092* (0.0749) 

y5* y5 -0.0099*** (0.0004) StockVS -0.1447*** (0.0379) 

y1* y2 0.0004*** (0.0001) ENSO 0.0002 (0.0015) 

y1* y3 0.0009*** (0.0002) t 0.0044*** (0.0008) 

y1* y4 0.0002 (0.0002) t2 0.0004 (0.0002) 

y1* y5 0.0019*** (0.0002) x2* t -0.0011*** (0.0003) 

y2* y3 0.0012*** (0.0002) x3* t 0.0034*** (0.0006) 

y2* y4 0.0001 (0.0002) y1* t 0.0003*** (0.0001) 

y2* y5 0.0013*** (0.0002) y2* t 0.0003*** (0.0001) 

y3* y4 0.0001 (0.0002) y3* t 0.0001 (0.0001) 

y3* y5 0.0029*** (0.0002) y4* t 0.0003*** (0.0001) 

y4* y5 0.0008*** (0.0002) y5* t 0.0006*** (0.0001) 

x2 0.1885*** (0.0025) Inefficiency model  

x3 0.1365*** (0.0047) Constant -15.9716*** (1.2192) 

x2* x2 0.0038 (0.0035) HHI 0.0004*** (0.0001) 

x3* x3 -0.2120*** (0.0114) SD HHI 3.3932*** (0.3649) 

x2* x3 0.0321*** (0.0057) BP 9.1502*** (1.4096) 

x2* y1 0.0039*** (0.0006) CS dummy -0.7324*** (0.0833) 

x2* y2 0.0080*** (0.0006) σu 0.0426***  

x2* y3 0.0052*** (0.0007) σv 0.1510***  

x2* y4 0.0015* (0.0008) λ= σu/ σv 0.2821***  

x2* y5 0.0024*** (0.0008) γ = σu
2/( σu

2 + σv
2) 0.0737***  

x3* y1 -0.0088*** (0.0010) Log-Likelihood 8,568.9886  

x3* y2 -0.0155*** (0.0011) N 21,191  

x3* y3 -0.0161*** (0.0013)    

x3* y4 -0.0016 (0.0014)    

x3* y5 -0.0027* (0.0014)    
* 10% level of significance, ** 5% level of significance, ***1% level of significance. 
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Table 4. Partial elasticities and returns to scale. 

Elasticities Whole Sample 
Command and 

control 
Catch Shares 

Input elasticities    

x1
a 0.681*** 0.653*** 0.720*** 

x2 0.183*** 0.191*** 0.173*** 

x3 0.136*** 0.156*** 0.107*** 

    

Output elasticitiesb    

y1 0.067*** 0.070*** 0.065*** 

y2 0.052*** 0.052*** 0.053*** 

y3 0.063*** 0.062*** 0.064*** 

y4 0.030*** 0.029*** 0.031*** 

y5 0.059*** 0.052*** 0.064*** 

    

RTS
c
 3.690*** 3.773*** 3.610*** 

 
a Elasticities for x1 are computed by homogeneity conditions. 

b The partial output elasticity corresponds to the negative of its estimate. 

c The RTS correspond to the inverse of the sum of output elasticities (Coelli and Perelman, 1999). 

*10% level of significance, ** 5% level of significance, ***1% level of significance. P-values were estimated based 

on the delta method. 
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Table 5. Diversification economies. 

Species 
Vermillion 

snapper 
SWG 

Other 

snapper 

Other 

species 

Red snapper  0.0004*** 0.0009*** 0.0002 0.0019*** 

Vermillion snapper  0.0012*** 0.0001 0.0013*** 

SWG     0.0001 0.0029*** 

Other snappers    0.0008*** 
 

* 10% level of significance, ** 5% level of significance, ***1% level of significance. 
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Figure1. Evolution of catch shares per trip and diversification index. 
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Figure 2. Evolution of red snapper quota and diversification index. 
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Figure 3. Evolution of environmental variables: ENSO and biomass. 
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Figure 4. Kernel density distribution of TE for vessels with low, medium, and high 

diversification levels. 
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Figure 5. Kernel density distribution of TE for vessels with low and high levels of 

diversification before and after the implementation of the catch shares program. 
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Figure 6. Relationship between diversification levels and TE scores: Annual averages before and 

after the implementation of the catch shares program. 

 

 

Note: Circle sizes are proportional to the coefficient of variation of the annual TE scores. 




